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In the atomic force microscope, the nanoscale force topography of even complex surface superstructures is
extracted by the changing vibration frequency of a scanning tip. An alternative dissipation topography with
similar or even better contrast has been demonstrated recently by mapping the �x ,y�-dependent tip damping but
the detailed damping mechanism is still unknown. Here we identify two different tip dissipation mechanisms:
local mechanical softness and hysteresis. Motivated by recent data, we describe both of them in a one-
dimensional model of Moiré superstructures of incommensurate overlayers. Local softness at “soliton” defects
yields a dissipation contrast that can be much larger than the corresponding density or corrugation contrast. At
realistically low vibration frequencies, however, a much stronger and more effective dissipation is caused by
the tip-induced nonlinear jumping of the soliton, naturally developing bistability and hysteresis. Signatures of
this mechanism are proposed for experimental identification.
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I. INTRODUCTION

The tip-based scanning force microscopes of the atomic
force microscope �AFM� family constitute perhaps the single
most important tool bag in nanotechnology. The substrate
topography is extracted from a map of the oscillation fre-
quency of a tip, hovering a short distance above the surface.
Besides the frequency shift however, the tip also develops a
damping, reflecting a position-dependent mechanical dissipa-
tion. Maier et al.1,2 showed recently that AFM dissipation—
whose general occurrence has been widely discussed by sev-
eral groups a decade ago3–7 but whose potential importance
was still underestimated—is able to map exquisitely delicate
features such as the Moiré superstructure pattern formed by
misfit dislocations �solitons� of incommensurate KBr adsor-
bate islands �Fig. 1�a�� on NaCl�100�. Surprisingly, the ex-
perimental dissipation map, Fig. 1�b�, showed similar or bet-
ter contrast than the corresponding topographic map, with a
characteristic reversed contrast �higher dissipation at the soli-
ton, where topographic height is minimal8�. Given also the
great importance of achieving newer routes toward high-
quality imaging, this is more than a mere curiosity, and de-
serves a proper understanding. Existing linear-response
theory and other approaches to AFM dissipation3,9 and to
general frictional dissipation10–12 suggest a larger tip damp-
ing above softer substrates, and that provides an initial and
valuable clue. Local tip dissipation can effectively reveal the
underlying superstructure since the local mechanical compli-
ance is higher, for example, at surface soliton lines, where
atoms sit at metastable positions. However at the relatively
low AFM oscillation frequencies, the current understanding
rules out linear response as the chief dissipation mechanism.
A typical energy dissipation as large as 0.01–1 eV per oscil-
lation can only be accounted for by a hysteretic response of
the interacting tip-substrate system, as was understood by

theoretical analysis,13–15 and demonstrated
experimentally.16,17 Such nonlinear effects of hysteresis are
most likely involved in the surprisingly large AFM dissipa-
tion contrast of adsorbate superstructures too. Yet, it is un-
clear how inert systems �such as, for example, alkali-halide
overlayers� could give rise to hysteretic phenomena and, in
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FIG. 1. �Color online� AFM Moiré superstructures of incom-
mensurate KBr bilayers islands/NaCl�100�, adapted from Ref. 2: �a�
topography; �b� dissipation. Note the opposite phase: dissipation is
largest at the soliton, where topographic height is minimal �Ref. 8�.
�c� 1D simulation model with a rigid substrate potential of period
asub, a harmonic chain of rest length a0 �the adsorbate overlayer�,
and the localized tip potential uT �here attractive� oscillating hori-
zontally �in experiments the oscillation is usually vertical�.
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particular, how they would be connected to the presence of
misfit superstructures �solitons�. This is the issue which we
address here by means of dynamical simulations of the sim-
plest one-dimensional �1D� model. Our main result is the
identification of an unexpected soliton-related hysteretic
mechanism. During the first part of its swing, the tip can
locally drag or push an underlying defect—here a soliton
portion—causing it to jump across a �Peierls-Nabarro� en-
ergy barrier. During the return journey, the defect follows
only sluggishly, and remains trapped somewhat longer on the
wrong side of the energy barrier, thus opening a hysteresis
loop. The area enclosed in the hysteretic force-displacement
diagram represents a large tip energy dissipation, one that
can survive down to realistically low AFM vibration fre-
quencies, a regime where the linear-response dissipation is
quantitatively irrelevant. This mechanism is likely to play a
significant role every time a “softness pattern” is present, and
should be easier to observe for horizontal than for vertical tip
oscillations.

II. MODEL

To emphasize the basic and general aspects of the phe-
nomena, rather than a realistic model targeted on the chemi-
cal detail of a specific tip/sample configuration,13–15,18 we use
the simplest possible model—a tip potential oscillating over
a one-dimensional harmonic chain �the overlayer� moving in
a rigid incommensurate periodic potential �the substrate�,
Fig. 1�c�. The Hamiltonian of the mobile overlayer atoms is

H = Ek + Uat-at + Usub + UT�t� , �1�

where Ek= m
2 �iẋi

2 is the kinetic energy,

Uat-at =
K

2 �
i

�xi+1 − xi − a0�2 �2�

is the mutual �harmonic� interaction potential, and
Usub=�iv�xi� is the substrate potential, which we take of a
pure cosine form

v�x� = −
Fsubasub

4�
cos�ksubx� . �3�

Here a0 is the mean spacing between adatoms, K is their
mutual spring constant, ksub=2� /asub, and asub is the period
of the substrate potential.19,20 The two periodicities a0 and
asub define the coverage �=asub /a0. For convenience we take
asub as the unit length, Fsub as the force unit, and the mass m
of the particles as the mass unit. �To get a feeling for quan-
tities, the frequency units Fsub

1/2m−1/2asub
−1/2 should be typical of

an atomic vibration or a Debye frequency �D, typically 1
THz or more�. The general lack of commensuration between
adsorbate and substrate periodicities gives rise to two-
dimensional misfit dislocations, sometimes called solitons,
which form a regular superstructure with the beat periodicity
between the two. Fixed boundary conditions �BCs� are cho-
sen in order to prevent the advancing tip to drag the entire
pattern along, that would occur if, e.g., periodic BCs were
used instead.

UT�t�=�iuT�xi , t� is the time-dependent oscillating poten-
tial describing the tip action on the overlayer. We represent

the AFM tip as a Gaussian-shaped oscillating potential, with
uT�x , t�=u�x−xT�t��, xT�t�= x̄T+�T cos��Tt�, and

u�x� = AT exp�− x2/�T
2� . �4�

Here AT represents the repulsive �contact AFM, AT�0� or
attractive �noncontact AFM, AT�0� tip-atom interaction
strength, �T is the tip width, �T and �T are the tip-oscillation
amplitude and angular frequency around its central position
x̄T.

The equation of motion for the ith overlayer atom is

mẍi = − v��xi� + K�xi+1 + xi−1 − 2xi� + fT�xi,t� − 	ẋi, �5�

where v��x�= 1
2Fsub sin�ksubx� and the tip force

fT�x,t� = −
�

�x
uT�x,t� �6�

is given by a straightforward analytical expression. A damp-
ing force term −	ẋi is introduced to represent all dissipation
phenomena which remove energy and allow the attainment
of a stationary frictional state.

We integrate the equations of motion �Eq. �5�� by means
of a standard adaptive fourth-order Runge-Kutta routine21

starting each simulation from a stationary fully relaxed over-
layer, as obtained by a preliminary relaxation of equally
spaced adatoms xi�0�= i ·a0 and ẋi�0�=0. All simulations are
carried out at a nearly commensurate coverage �=1.06= 53

50,
realized by means of a chain of N=107 particles in a region
of length L=100asub. A finite temperature T is implemented
by adding a standard Langevin random force to Eq. �5�, and
averaging over a long simulation time, usually at least 100
tip-oscillation periods. The extreme simplicity of the model
allows us to extend simulations down to the realistic AFM
frequency in the MHz range, which requires exceedingly
long integration times.

The instantaneous power drained away by the damping
term amounts to

Pdiss = �
i

ẋi · �	ẋi� = 	�
i

ẋi
2 =

2	

m
Ec �7�

and is thus proportional to the total kinetic energy of the
overlayer. The power pumped by the tip into the chain is

PT = �
i

fT�xi,t� · ẋi. �8�

While these two quantities fluctuate separately, they must of
course coincide on average over a period 
=2� /�T in the
dynamical steady state,

P̄ =
1



�




dtPT�t� =
1



�




dtPdiss�t� , �9�

also indicating how the work done by the tip oscillation is
eventually dissipated entirely by the viscous friction term.

III. RESULTS: LINEAR RESPONSE AND BEYOND

Figure 2 displays the dissipation results obtained in simu-
lation for a weakly attractive tip potential, very high oscilla-
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tion frequency, and general parameters that fall well inside
the linear-response regime.3,9–12 The linear-response results
show �i� strong dissipation enhancement at solitons, with

P̄�x̄� several orders of magnitude stronger than in a terrace
between two of them, closely mirroring the phonon local
density of states �LDOS�; �ii� dissipated power which is pro-
portional to AT

2, independent of the attractive/repulsive sign
of the tip-overlayer interaction, i.e., of the noncontact or con-
tact mode of the AFM; �iii� absolute dissipation values that

are very weak everywhere, and dropping with decreasing
AFM frequency as ��T /�D�2. Summing up, the predicted
relative contrast of the soliton pattern in linear-response dis-
sipation is indeed very large. However, the exceedingly low
value of realistic AFM frequencies ��MHz� relative to mi-
croscopic frequencies ��THz� renders this linear-dissipation
mechanism entirely academic.

We reach a more realistic regime by enhancing the tip-
overlayer interaction strength while still remaining in a
moderate-interaction regime representing noncontact AFM.
This new regime is dominated by nonlinear effects, where
dissipation no longer drops as �T

2 but at most linearly in �T
�apart from logarithmic corrections�. Comparison of Fig. 3�a�
with Fig. 2�c� shows that nonlinear dissipation is again much
larger near the solitons than in between them. A two order of
magnitude increase in AT would in linear regime imply a
dissipation increase by a factor 104 whereas we find a much
larger factor of about 106 already at this large frequency ��T
is here 10−4�, corresponding to the gigahertz range�. De-
creasing frequency down to realistic AFM values, the in-
crease will become gigantic because the nonlinear dissipa-
tion lacks the extra power of �T appearing in the linear-
regime dissipation. The new element brought in by
nonlinearity is mechanical. A strongly interacting tip is now
able to drag, or to push, the soliton—a mobile entity—
forward or backward during the oscillation cycle. As the soli-
ton must overcome the �Peierls-Nabarro� barrier in order to
move, its motion is sluggish, and can follow the tip only with
hysteresis and, as anticipated, hysteresis entails a large dissi-
pation. As shown in detail in Figs. 3�a� and 3�b�, the higher
dissipation point A is found to be corresponding to two suc-
cessive Peierls-Nabarro barriers being overcome in the oscil-
latory process, the smaller dissipation point B to a single
barrier. The dissipation at point C, where the tip potential is
unable to “grab” the soliton, is negligible by comparison.
The onset of this large-dissipation region, dominated by hys-

20 30 40 50 60
x

T

0

2×10
-14

4×10
-14

P

0.5

1.0
nu

m
be

r
de

ns
ity

2×10
-6

4×10
-6

6×10
-6

ph
on

on
L

D
O

S
(a)

(b)

(c)

FIG. 2. �Color online� The linear-response regime. �a� Overlayer
atom density �dashed�, rest positions �circles�, in the periodic sub-
strate potential �solid�. �b� The density of zero-frequency overlayer
vibrational modes peaks at the soliton positions. �c� Dissipated
power during tip vibration for a tip width �T=�T=asub, weakly
attractive potential of amplitude AT=−10−4, 	=0.2 �underdamped
regime�, K=5 �fairly rigid overlayer�, and oscillation frequency
�T=10−4� �roughly 1 GHz�. This regime is described well by
linear-response theory. Note a huge dissipation peak contrast at the
soliton position relative to the terrace between solitons of about 104.

20 30 40
x

T

0

1×10
-8

2×10
-8

P

A

B

C

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

-0.001

0

0.001

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

-0.001

0

0.001

ov
er

la
ye

r
fo

rc
e

ac
tin

g
on

th
e

tip
F T

to
t

-1 -0.5 0 0.5 1
x

T
(t) - x

T

-0.001

0

0.001

B

x
T
=24.5

x
T
=24

x
T
=37

A

C

(b)(a)

FIG. 3. �Color online� The strong-interaction hysteretic regime. �a� Mean power dissipated in the steady regime by a strongly interacting
tip �AT=−0.01, all other parameters the same as in Fig. 2� scanning the same overlayer �K=5�. �b� Force-displacement response at three
typical scanning points marked in the left panel. The strong dissipation at the solitons is now due to hysteretic jumps of the solitons �kinks�
across their Peierls-Nabarro barriers. The dissipated energy in a cycle equals the area of the hysteretic loop in the force-displacement plane
�shaded�. When the potential is strong enough to drag or push a soliton �points A and B�, this occurs with hysteresis and the dissipation is
large. With the selected oscillation amplitude, the soliton is dragged across two barriers �point A� or a single barrier �point B�, depending on
the center of tip position x̄T. When the tip grabs no soliton �point C� there is no hysteresis and dissipation drops.
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teresis, is rather sharp. Figure 4 illustrates this point, by

showing the average power P̄ at location A, divided by the
linear-regime factor �AT�2, as a function of the tip amplitude
�AT�. Beyond a value of �AT� of order 4�10−3, the linear-
regime behavior is abruptly abandoned, and the dissipation
increases rapidly by several orders of magnitude.

IV. PREDICTIONS AND DISCUSSION

Our simulated example strongly suggests that a large hys-
teretic component should be present in the existing dissipa-
tion maps22 of Moiré patterns. More generally, hysteretic de-
fect dragging should dominate the AFM dissipation maps.
What are the predicted signatures of this mechanism? Our
model study suggests two main signatures.

�i� Abruptness of AFM friction onset with increasing
strength of tip-surface interaction. As suggested by Figs. 3
and 4, dragging sets in abruptly only above a certain thresh-
old, which means below a certain tip-surface or tip-soliton
distance.

�ii� Anomalously mild �linear with logarithmic correc-
tions� frequency dependence of AFM friction at finite tem-
perature. It is a rather general property of all hysteretic fric-
tion phenomena to heal away at sufficiently low frequencies,
where adiabatic motion allows sufficient time to jump ther-
mally over barriers. For instance, thermolubricity
experiments23–26 and detailed calculations within the
Tomlison model27 show an average friction force
F=Fc−AT2/3�log�v /T��2/3, where v is the driving velocity,
and A and  are system-dependent dimensional constants. In
incommensurate overlayers, the soliton nearest to the tip
behaves similarly to a Tomlinson particle, as is driven across
a Peierls-Nabarro barrier. In Fig. 5�a� we do observe a ther-
mal reduction in dissipation, due to a shrinkage of the hys-

teretic loop, illustrated in Fig. 5�b�. When driving is oscilla-
tory as in AFM dissipation, the role of v is taken by �T�T.
We find our data to be compatible with a similar relation

P̄�T�= P̄�0�−A�T2/3�log���T /T��2/3. The parameters A� and
� are here related to the effective soliton properties �mass,
damping, barrier height,…�, and are nontrivial functions of
the “bare” model parameters.

We conclude that AFM dissipation maps of incommensu-
rate overlayer superstructures can, in principle, achieve an
extremely high contrast resolution of soliton defects relative
to commensurate terraces. The most important theoretically
predicted dissipation mechanism is the nonlinear dragging or
pushing of some local portion of the defect, where the large
tip damping is associated with hysteresis of defect motion.
Besides a sharp threshold in the tip-surface interaction and
oscillation magnitudes, this mechanism predicts a very char-
acteristic logarithmic dependence �eventually turning to lin-
ear at extremely low frequencies� of dissipation upon fre-
quency and temperature. More generally, the nonlinear
dragging of soft defects or features �e.g., a floppy residue in
a biomolecule� should give rise to a strong visibility in AFM
dissipation topography, of considerable potential impact for
applications.
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FIG. 5. �Color online� The dissipation reduction due to thermal
shrinking of the hysteretic loop, for �T=10−4� at the soliton loca-
tion A of Fig. 3. �a� The frequency dependence of the energy dissi-

pated in one period P̄ 2� /�T, computed for several temperatures,

exhibiting a clear reduction in P̄ 2� /�T due to a rise in tempera-
ture. �b� Detail of the right-side area of the force-displacement de-
pendency following two typical tip-oscillation periods for T=10−5,
solid, and 10−6, dotted, compared to T=0, dashed: the hysteretic
area is shrinking due to a randomly anticipated thermally activated
barrier crossing.
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